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Diophantine Geometry

Diophantine Geometry is the study of polynomial equations

F (X1,X2, . . . ,Xn) = 0,

where F is usually a polynomial with rational coefficients.

Theorem (Fermat’s Conjecture, Wiles ’95)
There are no positive integer solutions to the
equation

an + bn = cn with n ≥ 3.

Problems:

▸ Decide when a polynomial equation has or has not rational or
integer solutions;

▸ Decide if the number of solutions is finite;

▸ In case of an infinite number of solutions, determine their
“distribution”;

▸ Find all the solutions.
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Diophantine Geometry

Geometrically, a system of polynomials defines an
algebraic variety.

→ Study of rational/integral points on a variety

Curves: The behaviour is totally determined by the genus of the curve:

▸ g = 0 ∶ either C(Q) = ∅ or C(Q) is infinite;

▸ g = 1 ∶ either C(Q) = ∅ or C is an elliptic curve and C(Q) is a finitely
generated group (Mordell-Weil);

▸ g ≥ 2 ∶ Mordell conjecture (Faltings ’83): ∣C(Q)∣ < +∞.

“geometry determines arithmetic”
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Unlikely intersections and Zilber-Pink conjecture

A possible strategy:

▸ If C(Q) ≠ ∅, we can embed C in an abelian variety JC (Jacobian
variety);

▸ JC(Q) is a finitely generated subgroup (Mordell-Weil);

▸ We have to show that C(Q) = C ∩ JC(Q) is finite.

This strategy inspired the formulation of several conjectures, as

▸ Manin-Mumford conjecture (Laurent, Raynaud, Hindry, Hurshowski,
Szpiro-Ullmo-Zhang, Pila-Zannier),

▸ Mordell-Lang conjecture (Laurent, Faltings, Hindry, Vojta,
McQuillan),

recently generalized by Zilber, Bombieri-Masser-Zannier in the case of
tori and more generally by Pink in the setting of mixed Shimura varieties.
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Unlikely Intersections - General philosophy

X ,Y ⊂ T subvarieties of an ambient variety of dimension n.

General expectation:
dim(X ∩Y ) ≤ dimX + dimY − n; in particular
X ∩Y = ∅ if dimX + dimY < n
unless there is some geometric reason for this.

More generally, let us fix X ⊂ T and let us consider Y a family of
subvarieties of T of codimension > dimX .

General expectation: X ∩Y = ∅ in “most of” the cases;
in particular, ⋃Y ∈Y X ∩Y is “small” with respect to X .
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Zilber-Pink Conjecture for semiabelian varieties

Conjecture (Zilber-Pink)
Let A be a complex semiabelian variety and let X be an irreducible
subvariety of A of dimension d. Let

A[d+1] ∶= ⋃
codim H≥d+1

H.

Then, if X is not contained in any proper algebraic subgroup of A, the
intersection X ∩A[d+1] is not Zariski-dense in X .

▸ few known cases – if X is a curve or dimX = n − 2 (Maurin,
Bombieri-Masser-Zannier, Viada, Rémond, Habegger-Pila,
Barroero-Kühne-Schmidt ...).
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Unlikely intersections in a torus

Theorem (Bombieri-Masser-Zannier 1999)
Let C ⊂ (C∗)n be an irreducible curve defined over Q such that it is not
contained in a translate of a proper algebraic subgroup of (C∗)n. Then,

C ∩ (C∗)[2] is finite.

Proof of BMZ:
bound on the height,
diophantine approximation.

New proof (C., 2014): Pila-Zannier
method: combination of techniques
from model theory (o-minimality),
functional transcendence.

↓

generalizable to other contexts
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contained in a translate of a proper algebraic subgroup of (C∗)n. Then,
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Example:
There exist only finitely many x ∈ C satisfying

{x
a1
(1 − x)a2(1 + x)a3 = 1

xb1
(1 − x)b2(1 + x)b3 = 1

with (a1, a2, a3), (b1,b2,b3) ∈ Z3 linearly independent.
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Height of an algebraic number:
measure of the “complexity” of the
number.
Ex: if α = a

b
∈ Q, then:

H(α) = max{∣a∣, ∣b∣}.
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Unlikely intersections in a torus

Theorem (Bombieri-Masser-Zannier 1999)
Let C ⊂ (C∗)n be an irreducible curve defined over Q such that it is not
contained in a translate of a proper algebraic subgroup of (C∗)n. Then,

C ∩ (C∗)[2] is finite.

Analogous results for curves
in families of abelian varieties

(Barroero-C.)



Application to Pell equation in polinomials

Let D ∈ C[t] be a polynomial without multiple roots; we ask whether
there exist A,B ∈ C[t] with B ≠ 0 such that

A2 −DB2 = 1.

In this case D is said to be “Pellian”.

▸ D Pellian → degD = 2d and D ≠ ◻ in C[t];
▸ The converse is not always true:

Example:

D(t) = t4 + t + 1 is not Pellian.

Question: How many Pellian polynomials do we have?
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Application to Pell equation in polinomials

Results of unlikely intersections → solvability of

A2 −DB2 = 1

for families of polynomials Dλ(t) in function of a parameter λ.

Example:
Let Dλ(t) = t6 + t + λ. There are only finitely many λ0 ∈ C such that
t6 + t + λ0 is Pellian.

One can study the same questions for families of “generalized” Pell
equations

A2 −DB2 = F

with D,F ∈ C[λ, t].
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Application to Pell equation in polinomials

Theorem (Barroero-C. 2020)
Let Dλ(t) ∈ Q(λ)[t] some “nice” polynomial. Let Fλ(t) ∈ Q[t, λ] ∖ {0}.
Then, either the generalized Pell equation has an identical solution, or
there exist at most finitely many λ0 ∈ C such that the specialized equation

A2 −Dλ0B
2 = Fλ0

has a solution A,B ∈ C[t] with B ≠ 0.

Example:
Let Dλ(t) = (t − λ)(t7 − t3 − 1) and F(X) = 4t + 1. Then there exist only
finitely many λ0 ∈ C such that the equation

A2
− (t − λ0)(t

7
− t3 − 1)B2

= 4t + 1

has a non trivial solution A,B ∈ C[t] with B ≠ 0.
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