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Diophantine Geometry

Diophantine Geometry is the study of polynomial equations
F(X1,X5,...,X,) =0,

where F is usually a polynomial with rational coefficients.

Theorem (Fermat's Conjecture, Wiles '95)

There are no positive integer solutions to the i
equation x"+y” £,
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a"+b"=c" withn>3.

Problems:

> Decide when a polynomial equation has or has not rational or
integer solutions;

» Decide if the number of solutions is finite;
» |n case of an infinite number of solutions, determine their
“distribution” ;

» Find all the solutions.
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—  Study of rational/integral points on a variety

Curves: The behaviour is totally determined by the genus of the curve:
» g=0:either C(Q) = @ or C(Q) is infinite;
» g =1:either C(Q) =@ or C is an elliptic curve and C(Q) is a finitely
generated group (Mordell-Weil);

> g >2: Mordell conjecture (Faltings '83): |C(Q)| < +oo.

“geometry determines arithmetic”
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Unlikely intersections and Zilber-Pink conjecture

A possible strategy:
» If C(Q) # @, we can embed C in an abelian variety J¢ (Jacobian
variety);
» Jc(Q) is a finitely generated subgroup (Mordell-Weil);
» We have to show that C(Q) =C n Jz(Q) is finite.

This strategy inspired the formulation of several conjectures, as
» Manin-Mumford conjecture (Laurent, Raynaud, Hindry, Hurshowski,
Szpiro-Ullmo-Zhang, Pila-Zannier),
> Mordell-Lang conjecture (Laurent, Faltings, Hindry, Vojta,
McQuillan),
recently generalized by Zilber, Bombieri-Masser-Zannier in the case of
tori and more generally by Pink in the setting of mixed Shimura varieties.
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X,Y c T subvarieties of an ambient variety of dimension n.

Aspettativa: dim(XnY) <dimX +dimY - n;
in particular XnY =@ sedimX +dimY <n s ht

unless there are some special reasons. E
’ sNt=9

“Unlikely intersections”

More generally, let us fix X ¢ T and let us consider ) a family of
subvarieties of T of codimension > dim X.

General expectation: X nY =@ in “most of” the cases;
in particular, Uyecy X N Y is “small” with respect to X.
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Zilber-Pink Conjecture for semiabelian varieties

Conjecture (Zilber-Pink)

Let A be a complex semiabelian variety and let X be an irreducible
subvariety of A of dimension d. Let

Al H

codim H>d+1

Then, if X is not contained in any proper algebraic subgroup of A, the
intersection X n Al9*Y) s not Zariski-dense in X.

> few known cases — if X is a curve or dim X = n—2 (Maurin,
Bombieri-Masser-Zannier, Viada, Rémond, Habegger-Pila,
Barroero-Kiihne-Schmidt ...).
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Let C c (C*)" be an irreducible curve defined over Q such that it is not
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Cn (C*)m is finite.

Example:
There exist only finitely many x € C satisfying

x1T(1-x)2(1+x)B =1
M1 -x)21+x)»3 =1

with (a1,az,a3), (b1, bo, b3) € Z3 linearly independent.
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Let C c (C*)" be an irreducible curve defined over Q such that it is not

contained in a translate of a proper algebraic subgroup of (C*)". Then,
2] .

Cn (C*)Y s finite.

Height of an algebraic number:
measure of the “complexity” of the
Proof of BMZ: number. .
bound on the height, Ex: if a=§€Q, then:

diophantine approximation.
H(a) = max{al,[b[}.
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bound on the height,
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generalizable to other contexts



Unlikely intersections in a torus

Theorem (Bombieri-Masser-Zannier 1999)

Let C c (C*)" be an irreducible curve defined over Q such that it is not
contained in a translate of a proper algebraic subgroup of (C*)". Then,
Cn (C*)m is finite.

Analogous results for curves
in families of abelian varieties
(Barroero-C.)
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Let D € C[t] be a polynomial without multiple roots; we ask whether
there exist A, B € C[t] with B # 0 such that

A’ - DB?=1.

In this case D is said to be “Pellian”.
» D Pellian - deg D =2d and D # 0 in C[t];

> The converse is not always true:

Example:

D(t) = t* + t + 1 is not Pellian.

Question: How many Pellian polynomials do we have?
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Application to Pell equation in polinomials

Results of unlikely intersections — solvability of
A’ -DB?=1
for families of polynomials Dy (t) in function of a parameter \.

Example:

Let Dy(t) = t° + t + \. There are only finitely many )\ € C such that
t® + t + \g is Pellian.

One can study the same questions for families of “generalized” Pell
equations
A*-DB?=F

with D, F € C[\, t].
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Application to Pell equation in polinomials

Theorem (Barroero-C. 2020)

Let Dy(t) € Q(\)[t] some “nice” polynomial. Let Fx(t) € Q[t,A]~ {0}.
Then, either the generalized Pell equation has an identical solution, or
there exist at most finitely many A\ € C such that the specialized equation

A’ - Dy, B? = Fy,
has a solution A, B € C[t] with B #0.

Example:

Let Dy(t) = (t = A)(t" = > —1) and F(X) = 4t + 1. Then there exist only
finitely many Ao € C such that the equation

A (t-Xo)(t' -2 -1)B* =4t +1

has a non trivial solution A, B € C[t] with B # 0.



